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ABSTRACT

A simulation study is used to demonstrate the application of principal component analysis to both the com-
pression of, and meteorological parameter retrieval from, high-resolution infrared spectra. The study discusses
the fundamental aspects of spectral correlation, distributions, and noise; the correlation between principal com-
ponents (PCs) and atmospheric-level temperature and water vapor; and how an optimal subset of PCs is selected
so a good compression ratio and high retrieval accuracy are obtained.

Principal component analysis, principal component compression, and principal component regression under
certain conditions are shown to provide 1) nearly full spectral information with little degradation, 2) noise
reduction, 3) data compression with a compression ratio of approximately 15, and 4) tolerable loss of accuracy
in temperature and water vapor retrieval. The techniques will therefore be valuable tools for data compression
and the accurate retrieval of meteorological parameters from new-generation satellite instruments.

1. Introduction

In the last decade, using advanced technologies, new
instruments have been built and proposed to improve
observations of atmospheric temperature, water vapor,
and winds. These instruments, mostly interferometers,*
represent the realization of a new measurement concept
based on high density, high spectral resolution infrared
measurements. They will provide measurements with
spectral resolutions finer than 1 cm~* and have quasi-
continuous spectral coverage in the 3-18-um spectral
region. The high-resolution measurements will greatly
improve the vertical resolution of retrieved atmospheric
variables (Huang et a. 1992). However, the volume of
data generated at the satellite will increase by at least
2 orders of magnitude, exceeding the capacity of the
current downlink technology and requiring expensive

1 That is, Interferometeric Monitor for Greenhouse Gases, Cross
Track Infrared Sounder, Michelson Interferometer for Passive At-
mospheric Sounding (Fischer and Oelhaf 1996), Infrared Atmospheric
Sounding Interferometer, and National Polar-Orbiting Operational
Environmental Satellite System Aircraft Sounder Testbed—Interfer-
ometer (NAST-I) (Cousins and Gazarick 1999).
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ground data processing systems. Under these circum-
stances the devel opment of an efficient and accurate data
compression procedure becomes crucial for the full re-
alization of the new measurement concept. The need for
efficiency isimposed by the fact that the onboard com-
puting power islimited, but accuracy isrequired to max-
imize the preserved information about the state of the
atmosphere embedded in the raw measurements.

In this paper, we investigate the applicability of prin-
cipal component analysis (PCA) to the problem of data
compression and inversion (Wark and Fleming 1966;
Smith and Woolf 1976; Smith et al. 1995) by formal-
izing quantitatively and qualitatively the trade-off be-
tween its efficiency and its accuracy. PCA is currently
being used for the developmental retrieval algorithms
for both the NAST-1 and Atmospheric Infrared Sounder
projects.

PCA has proven to be a valuable tool not only for
compressing spectral data (in the brightnesstemperature
space) but also for smoothing out part of the instrument
noise that is contained in the measurements (in this pa-
per, noise will normally refer to the Gaussian part of
the instrument noise, unless otherwise noted). The key
concept behind the evaluation of PCA as a data com-
pression tool [i.e., principal component compression,
(PCQ)] is how the best compression achievable is de-
fined. This concept in remote sensing is not uniquely



366

defined; at least two definitionsarewell suited and wide-
ly accepted for interferometric data compression.

According to thefirst definition (hereinafter definition
1), the best compression is the one that preserves most
of the information contained in the raw data, that is, the
one that minimizes the loss of information. This defi-
nition represents a clear criterion for the evaluation of
PCC, but its applicability depends on the nature of the
information loss. The original signal, in fact, contains
information on both the real state of the atmosphere and
the instrument noise. A loss of the first component
would lead to a loss of accuracy in the retrieved vari-
ables, but a loss of the second component would gen-
erally lead to an enhancement of the retrieval accuracy.
Therefore, definition 1 is not completely applicable un-
less it is possible to determine the nature of the infor-
mation loss due to the compression.

The second definition (hereinafter definition 2) is:
the best compression isthe one that guarantees the best
retrieval performances. This definition is independent
of the nature of the information loss but depends on
the properties of the retrieval algorithm used (robust-
ness to noise, sensitivity to nonlinear features, etc.).
Different retrieval algorithms may not only lead to dif-
ferent evaluations of PCC as a compression technique
but also to differences in the best compression ratio
achievable. In this paper, PCC is evaluated with respect
to both definitions 1 and 2. We will show that, given
a retrieval algorithm based on linear regression, the
best compression ratio achieved by PCC according to
definition 1 does not strictly lead to the best retrieval
results. In any case, a consistent conclusion can be
drawn about the optimal compression ratio achievable
by PCC according to both definitions. In fact, the loss
in the accuracy of the retrieved variables is shown to
be almost constant, and negligible, about its minimum
for a wide range of values of the compression ratio.
Therefore, even if the best compression ratio can not
be uniquely determined, an optimal estimation of it
can be found.

To assess PCC qualities according to both definitions
and for different noises, only simulated high-resolution
infrared data are used. Linear regression applied to com-
pressed data has been chosen to retrieve temperature
and water vapor profiles from the simulated observa-
tions.

In thisstudy, it is shown that when the noiseis Gauss-
ian distributed with zero mean and known standard de-
viation (std), a compression ratio of about 15 can be
achieved, with temperature retrieval degradation of less
than 0.05 K and a water vapor retrieval degradation of
less than 0.05 g kg~*, with respect to the best linear
regression retrieval achievable either for compressed or
uncompressed data. In addition, the performance of PCC
has been evaluated, according to definition 2, for dif-
ferent stds and statistical distributions of the instrument
noise. For those cases, the conclusions drawn about the
compression ratio still hold.
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Section 1 describes in detail the characteristics of
the datasets and instrument measurements used in the
study and the procedure followed in generating the
noise. Section 2 introduces PCA from a mathematical
point of view and describes some of its most relevant
properties. Section 3 focuses on PCC, that is, PCA
applied to data compression; it describes separately the
results obtained by applying PCC to noise-free and
noisy data and discusses both the negative (atmospher-
ic information loss) and the positive (noise reduction)
effects of PCC on the synthetic data. In this section,
we describe also some of the statistical properties of
the compressed data. Section 4 discusses the inversion
of the compressed radiance data using linear regression
[this technique is hereinafter referred to as principal
component regression (PCR)]. In the last part of the
paper, the conclusion about the achievable compression
ratio will be discussed, and some ideas for future work
will be proposed.

Although most satellite infrared measurements are
likely to be cloud contaminated, a realistic simulation
of cloud effects is beyond the goal of this paper. The
results of the current study are therefore applicable only
to clear-sky observations, although cloud detection tech-
niques are developing (Smith et al 1998; Cuomo et al.
1999) and, in the future, will be incorporated into this
research.

2. The dataset and the instrument measur ements

To apply PCA to high-resolution interferometric data,
both a training set (12 000 profiles) and a testing set
(2000 profiles) of temperature, water vapor, and ozone
profiles were selected at random from a 1996 global
radiosonde dataset. The profiles have been arbitrarily
clustered in three main classes: 1) subpolar profiles[lo-
cated at latitudes greater than 50°N (S)], 2) midlatitude
profiles [located at |atitudes between 25° and 50°N (S)],
and 3) tropical and subtropical profiles (located at lat-
itudes between 25°N and 25°S). Figure 1 shows the
spatial distribution of the observations and the per-
centage of observations belonging to each class with
respect to the entire ensemble.

The geographical distributions for the testing and
training datasets are shown to be consistent, but the
relative lack of observations over the oceans and in the
Tropics might affect the representativeness of the da-
tasets. For each profile, a noise-free, clear-sky spectrum
of N, = 3888 channels of brightness temperatures was
generated through a radative transfer model (Strow et
al. 1998), with a spectral resolution of 0.6 cm~* and a
spectral coverage from 550 to 2750 cm~* (Smith et al.
1990). This radiative transfer model allows both the
atmospheric temperature and the concentration of ab-
sorption gases such as water vapor, ozone, methane, and
carbon dioxide (CO,) to vary. In the current imple-
mentation, the variation of CO, amount is fixed and all
other minor gases (including methane and carbon mon-
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Fic. 1. Observation distributions for (@) training and (b) testing datasets.

oxide) are parameterized and varied as per climatolog-
ical data.

Figures 2a and 2c show the mean temperature and
water vapor profiles plus and minus the std, and Fig.
2e shows the mean, noise-free, simulated spectrum
from the selected 1996 database. Figure 2b shows the
temperature profiles characterized by the maximum
and minimum mean temperature (over the 42 vertical
pressure levels ranging from 0.1 to 1050 hPa), and
Figs. 2d and 2f show the water vapor profiles and the

noise-free spectra associated with the temperature pro-
files in Fig. 2b. Note that, because the profiles are
defined only at 42 pressure levels, the simulated spectra
differ from the real spectra not only because of the
forward model’s intrinsic limitations but also because
the representation of the atmospheric (column) state
has a finite number of degrees of freedom. The next
section describes what PCA is and under which con-
ditions it guarantees the best compression according
to definitions 1 and 2.
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Fic. 2. (a) Training mean temperature profile and mean profile plus and minus standard deviations of training dataset. (b) Temperature
profiles characterized by maximum and minimum vertical mean over the pressure levels. (¢) Training mean water vapor profile and mean
profile plus and minus standard deviations of training dataset. (d) Water vapor profiles associated with the temperature profiles in (b). (e)
Brightness temperature spectrum calculated for mean profile condition of training dataset. (f) Brightness temperature spectra computed from
the profiles in (b) and (d).
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Fic. 4. (a), (b) Examples of the differences between Gaussian channel distributions and the Gaussian distributions with same mean and
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3. PCA

PCA isamultivariate analysistechnique that wasfirst
introduced by Pearson in 1901 and developed indepen-
dently by Hotelling in 1933. It is commonly used to
reduce the dimensionality of a dataset with alarge num-
ber of interdependent variables. This reduction is
achieved by finding a set of N, orthogonal vectors in
the input space of dimension N., with N, < N, which
accounts for as much as possible of the data variance.
Hence, the problem of dimensionality reduction is re-
duced to finding alinear transformation from the N-di-
mensional input space to an N,-dimensional subspace
spanned by N, orthogonal vectors defined above and
hereinafter referred to as principal components (PCs).
The first PC is defined as the direction along which the
variance of the input data has its maximum. The second
PC is the vector in the orthogonal (N, — 1)-dimensional
subspace complementary to the first PC, which explains
most of the remaining variance and so on until the last
PC is the direction of minimum variance.

Let x be an N-dimensional array of observables (in
our case, brightness temperatures) with probability den-
sity function p(x), and define C; as the ith, jth element
of the covariance matrix C of a set of observations of x:

tr|

-8 - S

X ( M" IME[; XI p)v (1)

where M,, represents the total sample number of x over
the training dataset. Then ** The k-th principal compo-
nent of the input vector X is the normalized eigenvector
v, corresponding to the eigenvalue A, of the covariance
matrix C, where the eigenvalues are ordered A, > A, >

- > A [proof in Deco and Obradovic (1996)].

It can be shown easily that for the case N, = N, PCA
linearly decorrelates the output, that is, diagonalizesthe
covariance matrix of the output components. Hence,
PCA essentially performs a singular value decomposi-
tion of the covariance matrix. However, the diagonal-
ization of the covariance matrix (i.e., decorrelation) does
not necessarily yield statistical independence. Statistical
independence implies that the probability distributionis
factorizable. Decorrelation in the general case yieldsto
linear independence. It yieldsto statistical independence
only under the assumption that the input variables are
Gaussian-distributed. This assumption holds only for
some of the channels. The implications of this problem
will not be addressed in this paper, but given that dif-
ferent algorithms, better suited for problems having dif-
ferent input distributions, could result in better com-
pression performances, we will discuss the probability
density function of the measurements in some detail.

To describe how far the actual distributions are
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from being Gaussian, we have used the kurtosis, here
defined as

E{ z*}
(E{z*})?

where E{ } represents the expected values, and z is a
random variable. The values of the kurtosis, which can
be either positive or negative, are plotted for each single
channel in Fig. 3b. The channelsthat have kurtosis close
to zero are generally Gaussian channels (Figs. 4a,b),
those with positive kurtosis are called super-Gaussian
channels (Figs. 4c,d), and the channels that have neg-
ative kurtosis are called sub-Gaussian channels (Figs.
4e,f). Super-Gaussian channels havetypically a‘* spiky”
PDF with heavy tails; sub-Gaussian channels, on the
other hand, tend to have a ‘‘flat” PDFE In Fig. 4, the
frequency distributions for six different channels are
compared with the Gaussian distribution with the same
mean and variance of the actual distribution; for each
plot, the value of the kurtosis is indicated. From Figs.
3 and 4, it is clear that the distribution for many of the
channelsis not Gaussian, especially in some of the most
important absorption bands. Therefore, in our case, after
the application of PCA, the compressed data are de-
correlated in the brightness temperature space, but they
might not be statistically independent. In other words,
the fact that they are not Gaussian-distributed may affect
the optimal value achievable for the compression ratio.

Among the different mathematical and statistical
properties of PCA, a relevant one for the present dis-
cussion is the compression error. The compression error
(least squares error) isdefined asLSE = ||x — x,||, where
X, isthe data array, which has been compressed and then
reconstructed according to the procedure described in
the next section. The || || represents the Euclidean norm.

It can be shown that the LSE is minimized by any
linear transformation whose rows span the same space
spanned by the PC. The proof is based on the optimal
reconstruction theorem: ** The reconstruction error LSE
is minima when the rows of the linear transformation
from the N_-dimensional input space to the N,-dimen-
sional PC space are vectors spanning the same subspace
as the N, eigenvectors of the input covariance matrix
corresponding to the N, largest eigenvalues’ [proof in
Deco and Obradovic (1996)].

Note also that the transformation that leads to the
optimal reconstruction is not the same as that obtained
with the application of PCA and does not guarantee the
decorrelation of the output components, even though
they span the same principal eigenspace. Deco and Ob-
radovic (1996) showed that in the reconstruction pro-
cess, only when each element of the input array x is
Gaussian-distributed is the ** principal subspace projec-
tion method” (i.e., reconstruction after PCA compres-
sion) equivalent to ‘‘the principle of minimum infor-
mation loss.” As aready mentioned, under the as-
sumption that the input data (measurements) are Gauss-

kurt = -3, 2
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ian-distributed, because of its reconstruction and
decorrelation properties, PCA should be a natural can-
didate for data compression.

4. PCC

The following notation will be used: S®: noise-free
training spectrum, S noise-free testing spectrum, St:
noisy training spectrum, St: noisy testing spectrum,
R reconstructed noise-free testing spectrum, and R®:
reconstructed noisy testing spectrum.

a. PCC applied to noise-free data

According to this method, the compression of noise-
free data is achieved through the following steps. First
Eqg. (1) for C is rewritten as as

13 18
C, = M_tr pzl S5 — M_u ;1 S
1 &
< |S6 = o 2 S| ©)
tr
wherei = 1,...,N;andj =1, ..., N.. The PCs are

evaluated by diagonalizing C, that is, by finding the
matrices U and D such that

(4)

where D is a diagonal matrix whose elements are the
eigenvalues of C and U is a matrix whose columns are
the eigenvectors of C. The differences between the
noise-free testing spectra and the mean training spec-
trum are projected onto the first N, PCs (i.e., the N, PCs
associated with the N, largest eigenvalues of C):

— T
CNCXNE - UNCXNCDNCXNCUNCX Ne?

N¢ 1 Mir
Q=2 (S — == > SH|Uy,, ®)
k=1 M, =2 °
wherei =1,...,M,andj =1, ..., N,. Using those

projection coefficients, the spectra are reconstructed as
follows:

N M
't 1 tr
R = 2 Q.U + = > S, ®)
' k=1 7 M, =1
wherei =1,..., M j=1 ..., N Qisthe pro-

jection coefficient of spectrum k onto theith PC; (1/M,,)
My S is the kth component (channel) of the mean
spectrum (over the training dataset from which Q,, is
also derived; and R is the ith reconstructed channel
of the jth testing spectrum.

The reconstruction root-mean-square (rms) error is
defined as

ONe M HW
(9 — S(9]2
rms = =2 Zl 1 v % . (7)
0 M N, 0
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FiG. 5. Brightness temperature information loss in the noise-free
data compression.

The reconstruction rmsis plotted in Fig. 5 versus the
number of PCs used, and it represents purely the loss
of information due to compression. Figure 5 shows that,
in the noise-free case, PCC is lossy, in the sense that it
does not preserve the total information contained in the
raw data, and that the rate of loss tends to zero as the
number of PCs tends to the number of channels.

Before continuing further with the description of
PCC, it is worth interpreting, with the help of linear
correlation, the physical meaning of some of the PCs.
Asshown in the appendix, the linear correlation between
the jth channel and the ith PC can be written as

O

Xii = ;Ui.jv

©)

where o; is the std of the projection coefficients on the
ith PC, o; is the std of the ith component of S®, and
(UT);; is the ith component of the jth PC.

Using this property of the PCs, it is possible to dem-
onstrate that the first PC has high linear correlation with
the window channels and low linear correlation with the
CO, and water (H,0O) absorption band channels. The
second and third PCs show the opposite tendency—they
are highly correlated with the absorption channels and
weakly correlated with the window channels. Figures
6a—c, show the correlation between the first three PCs
and all the channels. Figure 6d shows the dependence
of the mean rms correlation, defined as

©)

where y,; represents the correlation between PC, and
channel j. The mean rms correlation tends to reach a
minimum and to fluctuate as the order approaches the
number of channels.
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The linear correlation represents a useful tool to in-
terpret the physical meaning of the different PCs, but
it does not represent the higher-order correlation terms
that may be important, especially for the absorption
band channels. Using linear correlationitisalso possible
to estimate, to a first approximation, how much infor-
mation each PC carries about a single temperature or
water vapor level. Figures 7a,b show the correlation
between the first PCs and all the different temperature
and water vapor levels. As might be expected from the
correlation between the PCs and the channels, the first
PC ishighly correlated with the lowest atmospheric lev-
el of temperature and water vapor. Less obvious is the
correlation for the second and the third PCs and the
atmospheric variables at different levels (Figs. 7c,d and
7ef). The second PC (highly correlated with H,O ab-
sorption band channels) has its maximum and minimum
correlation with temperature at 500 and 300 hPa, re-
spectively, and has its maximum and minimum corre-
lation with water vapor at 300 and 670 hPa, respectively.
The third PC has zero correlation with the lowest levels
of temperature and maximum correlation with the tem-
perature at 50 hPa and has its correlation maximum with
temperature out of phase with the correlation maximum
with water vapor.

b. PCC applied to noisy data

The introduction of noise substantially alters the con-
clusions made in the noise-free case. First, we will de-
fine how noise is simulated. The instrument noise for
an interferometer has two main components. The first
component, known as detector noise, is Gaussian-dis-
tributed with zero mean and std dependent on the mea-
sured radiance B (see section 1) through the following
expression:

O O
B /B
o= NeDT2 /B il (10)
%BT 9By 250 K

where NeDT is 0.25 K at a scene temperature of 250
K and B; represents the value of the brightness tem-
perature. The detector noise is not correlated in the time
domain (white noise), and it is the dominant term. The
second term is associated with the dynamics of the me-
chanical components of the interferometer. It is gener-
ally correlated in time, and it may be modeled simply
by a small percentage of the measured signal plus a
small percentage of the first time derivative of the signal
itself. With the introduction of noise, the signal to be
compressed becomes

S=S+ 1, (11)

where S is the noisy signal and 7 is the noise. Using
the linearity of PCC, it is possible to write

PCC[S®] = PCC[S®] + PCC(n). (12)
Because we have already discussed the first term on
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the right side of Eq. (12), the following section will
evaluate the PCC effects on the second term and then
will discuss them jointly.

Figures 8a—c compare the reconstructed noise using
three different numbers of PCs to the original noise for
a single spectrum. The first few PCs carry little infor-
mation about the noise, and the higher-order PCs carry
more and more noise information. The rms of recon-
structed noise has also been plotted in Fig. 9 versus the
number of PCs used in the compression.

Let us define two new variables that represent a mea-
sure of the differences between the noisy signal recon-
structed after compression and the original uncompres-
sed noise-free signal (rmsdiff) and the differences be-
tween the signal reconstructed after compression and
the original noisy signal (nrmsdiff), respectively:

Ne 2\ v2
{2 [St — ?es@]}

i=1

rmsdiff = and

N ’

C

{i [”S(ts) — ﬁzi(ts)]}

N

nrmsdiff = (13)

c

Figure 16a (described later; obtained by comparing
Figs. 5 and 9) shows that PCC has two different effects
when applied to noisy spectra: using too few PCsresults
in part of the signal information being lost; using too
many PCs results in more and more noise being recon-
structed.

Figure 10a shows a minimum in the rmsreconstructed
differences rmsdiff at approximately 150 PCs. With real
data, the original noise-free signal is not available, and
the evaluation of the effects of PCC on the data has to
be based on the differences between the original noisy
signal and the reconstructed noisy signal. Figure 10b
shows how the evaluation of PCC based on the differ-
ences between the original noisy signal and the recon-
structed one could be misleading; the noise filtering ef-
fect would be interpreted as signal information loss.

According to definition 1, an objective criteriafor the
evaluation of PCC could be based on the minimization
of rmsdiff. That would ensure the minimum loss of in-
formation, but, as we will show, it does not guarantee
the best performance for the retrieval process. For ex-
ample, although a compression obtained using the first
150 PCs minimizes the reconstruction rms differences,
it does not yield the best temperature and water vapor
retrieval. Therefore, definition 2, based directly on the
retrieval performance, is also needed to provide a dif-
ferent perspective on the definition for the optimal com-
pression of spectral data. According to this definition,
the best compression ratio value is the minimum among
all the compression ratio values for which the retrieval
rms error is the smallest at every level.
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5. PCR

In multiple linear regression, one of the major diffi-
culties with the least squares estimators is multicolli-
nearity. Multicollinearity occurs when there are near-
constant linear functions of two or more predictor var-
iables (in this case, the brightness temperature values)
and is often, but not always, indicated by large corre-
lations between subsets of the variables. Figure 11
shows the mean absolute value of the correlation be-
tween each channel and all the others defined as

1 &
) 21 |Xi,j|:

i#]

X=5 (14

where y; represents the correlation between channel i
and channel j. The channels with the highest mean cor-
relation are the windows. Figure 3a shows the mean
spectrum and the absorption bands. The absorption line
channels (except for the ozone band) are characterized
by smaller mean correlation. If multicollinearitiesexist,
the variances of some of the estimated regression co-
efficients can become very large, leading to unstable
and often misleading estimates of the regression equa-
tion (Jolliffe 1986).

PCR alleviates the existing multicollinearities among
the high-spectral-resolution brightness temperature
measurements. It simply uses the projections of the pre-
dictor variables (brightness temperature) onto a subset
of PCs in place of the predictor variables themselves.
Because the PCs are linearly uncorrelated, there are no
multicollinearities between the projection coefficients.
If al the PCs were included in the regression, then the
resulting regression would be equivalent to that obtained
by least squares regression, and the large variances
caused by multicollinearities would not be reduced.
However, if some of the PCs related to the smaller ei-
genvalues are del eted from the regression equation, then
the large variances for the regression coefficients are
greatly reduced, and reliable regression estimates can
be achieved.

According to Eg. (5), the brightness temperature mea-
surements can be transformed into expansion coeffi-
cients (); by using a subset of N, PCs, wherei = 1to
N, and j = 1to M,,. Equation (5) represents the mapping
of the whole spectrum of information of N, channels
onto the PC space of N, coefficients. This mapping sig-
nificantly reduces the dimensionality of the matrix need-
ed to beinverted later, because N, is usually much small-
er than N. The linear regression relationship between
expansion coefficients of infrared measurements and
temperature or water vapor profiles is defined by

P — ¢|,j(QT)j,i + [ﬁ - ‘bl.j(m)j]v (15)

where | is the number of vertical levels representing the
temperature or water vapor profile p; the overbar in-
dicates a mean over i; and i and j are the same as in
Eq. (5). Thevariable ® becomestheregression retrieval
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coefficient matrix that needs to be derived from a very

large training ensemble dataset S®™ to perform regres-

sion retrieval analysis on other independent infrared

measurements S®. The least squares solution for ® in

Eqg. (15) can be derived as

[(QT)j,iQi,j]ﬂ
My ’

where superscripts ()~* and ()T stand for the matrix
inverse and transpose, respectively. The matrix to be
inverted has the size of N, by N,, where N, is the number
of PCsin the selected subset. In the case of using chan-
nel measurements directly in this regression analysis,
the size of this matrix is significantly increased to N,
by N., where N, for typical current and future high-
spectral-resolution infrared spectra is on the order of
thousands.

After one successfully obtains the representative re-
gression coefficient matrix ® from the ensemble train-
ing dataset (i.e., 1996 radiosonde dataset), theregression
retrieval of the independent high-spectral-resolution
sounding-instrument measurements with specific noise,
spectral coverage, and resolutions for temperature or
water vapor profileretrievalsis obtained using Eq. (17),

pi™ = (nbl,jQIiind + P|Tep - ¢’|,ij (17)

where Q' is computed from Eq. (5) using S® from
independent infrared measurements, and @ is simply
obtained from Eq. (16), which is derived from the train-
ing dataset described in the previous section. The re-
gression results p are of temperature or water vapor
profiles that can be compared with the true profiles used
to simulate the independently measured S®.

¢|,j = (Pl,i - E)(QI]) (16)

6. PCR retrieval optimization

The optimal number of PCs, N, in Eq. (15), can be
determined by balancing two partially conflicting ef-
fects. To eliminate large variances of regression coef-
ficients due to multicollinearities, it is essential to re-
move all those components whose variances are very
small without deleting components that have large cor-
relations with the dependent variable p. One approach
is to use different values of N, and to determine which
N, yields the smallest temperature or water vapor profile
retrieval errors over an ensemble of independent sim-
ulated measurements. The temperature and water vapor
retrieval rmserror for the testing spectrahave been eval -
uated at different pressure levels. The asterisk marksin
Figures 12, 13, 14, and 15 represent the values of N,
that minimize the rms error for that specific level.

To evaluate the dependence of N, on the noise char-
acteristics, the optimal N, has been determined for five
different cases characterized by five different assump-
tions on prior information available about the real noise
properties, as follows.

1) No information available: the regression coefficients
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® are evaluated using noise-free training data (di-
amonds in Figs. 12 and 13).

2) Perfect knowledge: the regression coefficients are nel) an std that is 1.4 times the one used for the noise
evaluated using noisy training data, where the noise added to the training spectra used for the evaluation
has the same statistical properties of the testing data

of the regression coefficients (dashed curvesin Figs.
(circlesin Figs. 12 and 13). 14 and 15).

3) Supernoise (partial knowledge with high noise): the
noise added to the testing spectra has (for each chan-
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4) Subnoise (partial knowledge with low noise): the
noise added to the testing spectra has (for each chan-
nel) an std that is 0.6 times the one used for the noise
added to the training spectra used for the evaluation
of the regression coefficients (solid curves in Figs.
14 and 15).

5) Correlated noise (partial knowledge with correlated
noise): the noise added to the testing spectra has the
same characteristics as the noise added to thetraining
spectra used for the evaluation of the regression co-
efficients but with the addition of a small component
that is correlated in the B; space; the testing spectrum
noise is obtained by adding to the uncorrelated noise
0.1% of the signal (dotted curves in Figs. 14 and
15).

Figures 12 and 13 show, for every atmospheric level,
that in the absence of noise information, the rms error
minima are larger than the ones obtained in Case 2
(perfect knowledge). The lack of prior information on
the noise causes a very fast degradation of the retrieval
performances when N, increases (i.e., PCR in case 1 is
much more unstable than in case 2). The optimal N, in
case 2 is dependent on the level of interest. For tem-
perature (Figs. 12a-h), the levels in the middle of the
atmosphere, 100850 hPa, have an optimal N, that is
smaller than the optimal N, of the levels near the surface
(1000 hPa). The minimum is reached at 2000 PCs,
which is about one order of magnitude greater than the
best compression ratio estimated according to the min-
imum information loss. The water vapor requires much
fewer PCsto obtain the optimal retrieval accuracy (Figs.
13a—€). In addition, for case 2, the regression retrieval
is proven to be very stable with respect to the number
of PCs used. Figures 14 and 15 show that the presence
of asmall component of correlated noise does not affect
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significantly the retrieval results. They also show that
the over- or underestimation of the noise in generating
the regression coefficients @ affects the PCR perfor-
mances in the same way as cases 1 and 2, but with
milder effects. Cases 3 (supernoise) and 4 (subnoise)
simply represent intermediate cases between the ex-
treme cases of case 1 and 2.

These results show that PCA alows a good com-
pression ratio using only a subset of PCs that charac-
terizes the high-spectral-resolution infrared measure-
ment with much smaller dimension or data volume. In
addition, PCA clearly guarantees small degradations of
the temperature retrievals.

Another important characteristic of PCR is that the
temperature retrieval performance obtained for a range
of PCs between 200 and 1000 is ailmost constant. The
rate of retrieval degradation is very small, as shown in
Fig. 16b. These results demonstrate the advantage of
PCR over traditional least squares techniques; least
squares retrieval, not demonstrated here, tends to be-
come unstable when correlated measurements are used.

Note that the best compression ratio, according to
definition 1, is approximately 20, but, according to def-
inition 2, the best compression ratio isabout 2. Although
these results seem to be very different, they are con-
sistent with each other. In fact it has been proven that
the retrieval degradation for a compression ratio up to
20 is very small. The reasons for this difference might
be explained simply by applying PCR to the compressed
spectrato retrieve the original noise-free spectra. Figure
17 shows the reconstruction errors for some of the chan-
nels. The circles represent the differences between the
reconstructed signal and the real noise-free signal as a
function of the number of PCs used in the reconstruc-
tion. The diamonds represent the differences between
the regressed signal obtained by applying PCR to re-
trieve the brightness temperature values instead of tem-
perature or water vapor values and the original noise-
free signal. The regressed spectra differences, after
reaching the minimum, are nearly constant, while the
reconstructed spectra differences, after reaching the
minimum, tend to increase. This indicates that PCR is
very robust with respect to the Gaussian component of
the instrument noise. In the retrieval process, increasing
the number of PCs, even if high-order PCs introduce
more and more noise, does not negatively affect PCR
performance as long as the PCs keep carrying some
information about the real signal. After 2000 PCs, the
ratio between the noise introduced and the real signal
information added is so large that PCR performances
start degrading. Therefore, we should conclude that the
evaluation of PCR according to Definition 2 depends
on the robustness of the retrieval algorithm with respect
to noise. The value of the compression ratio correspond-
ing to the best retrieval performances is not really in-
dicative as long as the retrieval performances are nearly
steady for a wide range of compression ratio values.
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7. Best compression ratio for PCC

We now address the compression effect as a result of
the application of PCA in the measurement space. Fig-
ure 18 displaysthe reconstruction residual of noisy spec-
tra of independent measurements in the spectral range
from longwave infrared of 550 cm~* to the shortwave
infrared of 2740 cm~* using 250 PCs. The rms of mea-
surement noise is also shown for comparison. Using
only 250 PCs, the complete spectral measurement of
3888 channels can be represented within measurement
noise. The loss of measurement information caused by
the reduced number of PCs, 250 versus 3888, is com-
pensated by the noise-reduction effect inherent in PC
reconstruction. Through the use of an optimal subset of
PCs, most of the information about the atmospheric state

can be retained, and the random component of mea-
surement noise of each spectral channel is reduced. If
one were to quantify the whole 3888 channel measure-
ments with 250 PCs, the measurements would be com-
pressed without significant loss of signal. The signal-
to-noise ratio may also be enhanced at the same time
because of noise reduction provided by the PC recon-
struction process. Figures 12, 13, 14, and 15 further
confirm that, for a wide range of compression ratio val-
ues, the retrieval performances are nearly constant. Set-
ting aretrieval degradation threshold at 0.05 K for each
individual profile level of temperature and from 0.05 to
0.002 g kg—* for different levels of water vapor, a com-
pression ratio of ~15 for temperature and ~20 for water
vapor is feasible.



380

JOURNAL OF APPLIED METEOROLOGY

VoLUME 40

Mean chi—chj correlation

0.8

A.«uwl) lr*

v
i

0.7

0.6

xmcun
<
tn
T

0.4 -

0.3

02r

0.1~

| 1 1 | ! 1 | 1 | 1

! ! 1 ! 1 i | 1 1 | 1

0
550

650 750 850 950 1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250 2350 2450 2550 2650 2750

wavenumber [cm‘l]

Fic. 11. Channel-to-channel mean correlation.

8. Summary and future work

These results demonstrate that PCA, PCC, and PCR
methods will be effective in processing the high volume
of data provided by the new generation of instruments
and in accomplishing accurate sounding profile retriev-
als. The best compression ratio and the best retrieval
can be simultaneously achieved in terms of the mini-
mization of both the reconstruction residuals and re-
gression retrieval error. PCA is demonstrated to be an
efficient way to decorrelate the measurements, even
when the input is not always Gaussian. Some of the
most significant PCs are highly correlated with retrieval
variables and therefore could be selectively used in lin-
ear regression, PCR, to retrieve temperature and water
vapor profiles. An optimal subset of PCs has been shown
to preserve theinformation, to reduce noise, and to com-
press efficiently the infrared measurements. Further-
more, an optimal subset of PCs ensures an improvement
of the PCR retrieval computational and numerical ef-
ficiency by significantly reducing the dimensionality of
the matrix that has to be inverted. It is shown that,
regardless of different noise configurations, similar re-
sults of PCC and PCR are obtainable.

Although not discussed here, one significant source
of error for this simulation study isthe radiative transfer
forward-model error, caused by the uncertainty of spec-
troscopic knowledge of the absorption characteristics of
various abundant atmospheric gases. This error com-
ponent will be included in future studies when real air-
craft or satellite high-spectral-resolution infrared mea-

surements along with in situ data will be available to
characterize this spectroscopic component.

The results obtained for PCA, PCC, and PCR are
based on specific assumptions about the training and
testing datasets, about the distribution of the infrared
measurement noise, and about the linearity of PCA and
PCR, assumptions that under certain measurement con-
ditions may not be optimal. Clustered, regional, and
seasonal datasets may further optimize the results of
PCC and PCR; we will defer this study to future work.

The simulation of measurement noise is aways sub-
ject to difficulties. In the follow-up research, we will
simulate the noise in measurement space and interfer-
ogram space, and we will perform the same simulation
experiments in this space. We will also investigate the
effects of spectral resolution and sampling on PCC and
PCR performance. The final assumption about the lin-
earity of the transformation used to compress and re-
trieve the data (PCC and PCR) is a good first approx-
imation for real problems in which the nonlinearity of
the measurements is not easy to model and to imple-
ment. However, we do plan to proceed with a nonlinear
PCA or independent component analysis in the near
future. Linear PCR will be compared with a nonlinear
algorithm, such as an artificial neural network—based
algorithm.

With the simulation of future instrument measure-
ments, it is possible to analyze the behavior and the
performance characteristics of principal component
compression and linear regression retrieval in away that
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is almost impossible with real data. It is also possible
to understand and to test the feasibility of the methods
before applying them to any real observations.
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APPENDIX
Derivation of Eq. (8)

The standard deviation of (), times the jth component
of the ith PC divided by the standard deviation of the
ith component of S® represents the linear correlation
between the jth channel and the ith PC. Let us define
the correlation between the values of the projections of
the spectra onto the ith PC and the values of the bright-
ness temperature for the jth channel as

X = e 2 (@~ 86, -5, (4D
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Fic. 17. Reconstruction rms error of linear regression and PCC methods: (a) 640.4 cm~*, (b)—(h) other channels, as

|abeled.
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Fic. 18. PCC reconstruction residual rms error of brightness temperature using 250 PCs. Instrument noise rms is
also shown: (a)—(c) bands 1 to 3, respectively.
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where the overbar indicates the mean over the number
of examples M,,. Then, y may be rewritten as

B 1
Xii = M, o0,
X 2{2 (le - §,I)Ul,i - Q_lk}(sxj - §J)1

(A2)
and, taking into account that (), . = 0, the | ast expression
becomes

. 1
M, 00,

Xii

My

X gl {2 Uii(Sy — SIS — g)} (A3)

Because the eigenvectors of C (PCs) are orthonormal,
we may write

B 1
Xii M, o0,
er NC Nc _ _
X 22D Ui(Sa — S0)|(Sep — Sep)s,;
k=1 p=1 =1
1 Ne  N¢

(A4)
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